
LeDex: Train LLMs to Better Self-Debug and Explain Code
Nan Jiang*, Xiaopeng Li, Shiqi Wang, Qiang Zhou, Soneya Binta Hossain, Baishakhi Ray, Varun Kumar, Xiaofei Ma, Anoop Deoras

1. Motivation: Open-Source LLMs Cannot Self-Debug Effectively 3. Evaluation

2. Approach: Data Collection, SFT and RL

● Self-debug ability is crucial for LLMs to refine their generated code based on execution feedback, which is 
important to solve complex problems.

● A chain of code explanation and code refinement is more effective for self-debug.
● However, open-source LLMs such as StarCoder and CodeLlama are very limited in self-debug. Their 

self-debug success rate is as low as 4.43 - 10.20%, while GPT-3.5-Turbo is 28.90%.

This work propose LeDex, a training pipeline to improve LLMs self-debug ability. LeDex consists of data 
collection, supervised fine-tuning and reinforcement learning. 
● With GPT-3-5-Turbo as the teacher model, LeDex brings the student model up to 17.79% improvement on 

pass@1 and 11.18% higher success rate of self-debug.
● With self-bootstrap data collection where the teacher model is the student model itself, LeDex still brings 

up to 8.52% improvement on pass@1. 

Data Collection

Reinforcement Learning

● LeDex first samples solutions for tasks in MBPP training set, APPS and CodeContests. These samples 
solutions are executed to collect the incorrect ones.

● A teacher model (a larger LLM such as GPT-3-5-Turbo, or the student model itself) is prompted to collect 
code explanation and refinements.

● Only explanation along with refinements that pass the test cases are retained as SFT training data.

Supervised Fine-Tuning
● We experiment with StarCoder-15B, CodeLlama-7B and CodeLlama-13B as the student models, using 

the collected wrong code, explanation and refined code triples to train the LLMs.

4. Case Study: LeDex Enables LLMs to Correctly Explain and Debug Code

● RL considers explanation and refinement reward. Explanation reward encourages code explanations that 
are semantically similar to the “best explanation” which leads to correct refinement. Refinement reward 
encourages code refinements that pass more test cases and are similar to the ground-truth code.

Model Approaches
MBPP HumanEval MBPP plus HumanEval plus

pass@1 pass@10 pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

CodeLlama-7B

Prompting
Initial Solution 38.21 67.24 34.27 69.60 37.18 61.23 27.40 60.81
Explain + Refine 43.42 72.09 40.13 74.95 42.46 67.41 32.49 66.58

LeDex SFT
Initial Solution 48.87 70.89 36.99 69.95 42.97 62.69 30.76 62.52
Explain + Refine 57.98 77.92 52.98 82.22 51.55 70.94 47.62 75.54

LeDex RL
Initial Solution 46.54 71.54 39.38 71.84 41.46 63.68 33.95 65.98
Explain + Refine 57.92 78.97 55.84 84.14 52.90 71.80 50.04 78.25

GPT-3.5-Turbo as Teacher

Model Approaches
MBPP HumanEval MBPP plus HumanEval plus

pass@1 pass@10 pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

CodeLlama-7B
LeDex SFT

Initial Solution 45.83 69.24 39.85 68.83 41.78 61.77 33.25 61.50
Explain + Refine 51.80 74.99 45.70 74.72 45.94 65.77 39.10 67.33

LeDex RL
Initial Solution 46.28 68.87 39.90 69.49 41.61 61.29 33.66 62.17
Explain + Refine 52.34 74.60 46.90 75.70 46.10 65.99 40.79 68.50

CodeLlama-7B Self-Bootstrap

Iterative Self-Debug Ability

● LeDex brings significant improvement on LLMs self-debug ability.
● LeDex is model-agnostic, using either larger teacher model or self-bootstrap for data collection improves. 
● LLMs trained with LeDex show strong and better iterative self-debug ability.

User: Create a function that takes 3 numbers. Returns true if 
one of the numbers is equal to the sum of the other two, and all 
numbers are integers. Returns false in any other cases. 
Examples:
any_int(5, 2, 7) ➞ True
any_int(3.6, -2.2, 2) ➞ False
Assistant: 

User: Running the above code returns the following error 
message:
AssertionError: expect any_int(1.5, 5, 3.5) == False, but was True
So the code does not pass the assertion. Please:
1. Explain why the above code is wrong.
2. Propose the correct code.

Assistant: The wrong code does not check if all the numbers are 
integers. It only checks if one of the numbers is equal to the sum of 
the other two. This is why the assertion `any_int(1.5, 5, 3.5)` returns 
True, which is incorrect. Below is the fixed code.

*Work done while interning at 
AWS AI Lab


