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3. Evaluation

1. Motivation: Open-Source LLMs Cannot Self-Debug Effectively
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iImportant to solve complex problems.
e A chain of code explanation and code refinement is more effective for self-debug.
e However, open-source LLMs such as StarCoder and CodeLlama are very limited in self-debug. Their
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_eDex brings significant improvement on LLMs self-debug ability.
_eDex is model-agnostic, using either larger teacher model or self-bootstrap for data collection improves.
_LMs trained with LeDex show strong and better iterative self-debug ability.

Data Collection :

e LeDex first samples solutions for tasks in MBPP training set, APPS and CodeContests. These samples o
solutions are executed to collect the incorrect ones.

e A teacher model (a larger LLM such as GPT-3-5-Turbo, or the student model itself) is prompted to collect
code explanation and refinements.

e Only explanation along with refinements that pass the test cases are retained as SFT training data.

4. Case Study: LeDex Enables LLMs to Correctly Explain and Debug Code

User: Create a function that takes 3 numbers. Returns true if
one of the numbers is equal to the sum of the other two, and all
numbers are integers. Returns false in any other cases.
Examples:

any_int(5, 2, 7) — True

any_int(3.6, -2.2, 2) — False

Assistant: The wrong code does not check if all the numbers are
integers. It only checks if one of the numbers is equal to the sum of
the other two. This is why the assertion "any_int(1.5, 5, 3.5) returns
True, which is incorrect. Below is the fixed code.
def any int(x, y, z):

if X +y==2z0r X+ 2z==yo0ry+ z==X:

Supervised Fine-Tuning

e We experiment with StarCoder-15B, CodeLlama-7B and CodeLlama-13B as the student models, using
the collected wrong code, explanation and refined code triples to train the LLMs.

. . Assistant: if all(isinstance(num, int) for num in [Xx, y, z]):
Reinforcement Learnlng def any int(x, y, z): return True
e RL considers explanation and refinement reward. Explanation reward encourages code explanations that If X+ys==2zorXx+z==yory+zs==x return False @

return True
return False

User: Running the above code returns the following error
message:

AssertionError: expect any_int(1.5, 5, 3.5) == False, but was True
So the code does not pass the assertion. Please:

1. Explain why the above code is wrong.

2. Propose the correct code.

are semantically similar to the “best explanation” which leads to correct refinement. Refinement reward
encourages code refinements that pass more test cases and are similar to the ground-truth code.
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